(完整版)高中物理必修2知识点归纳

发布时间:   来源:文档文库   
字号:
高中物理必修二知识点总结
第一模块:曲线运动、运动的合成和分解
<> 曲线运动
1、定义:运动轨迹为曲线的运动。
2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上 3、曲线运动的性质: 曲线运动一定是变速运动(选择题)
由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件
物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类
⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。
⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变作用下所做的曲线运动,如圆周运动。

<> 运动的合成与分解(小船渡河是重点
1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际效果分解,或正交分解。
3、合运动与分运动的关系:
运动的等效性 等时性 独立性 运动的矢量性 4、运动的性质和轨迹
物体运动的性质由加速度决定加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动 物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)




第二模块:平抛运动
平抛运动
1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件:a、只受重力;b、初速度与重力垂直
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速g,因而平抛运动是一个匀变速曲线运动。ag
4研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动一个是水平方向(垂直于恒力方向;类平抛也是如此)的匀速直线运动,一个是竖直方向(沿着恒力方向;类平抛也是如此的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.
V0xx/2xOθαSV0VxyP(x,VyyV5、平抛运动的规律(所有同学必须掌握,必考内容

①水平速度:vx=v0,竖直速度:vy=gt 合速度(实际速度)的大小:vvxvy22
物体的合速度vx轴之间的夹角为:tanvyvxgt v0②水平位移:xv0t,竖直位移y12gt合位移(实际位移)的大小:sx2y2 2
物体的总位移sx轴之间的夹角为:tanygt
x2v0可见,平抛运动的速度方向与位移方向不相同。而且tan2tan2 6、平抛运动的几个结论
①落地时间由竖直方向分运动决定:只与抛出点与地面的高度h有关 h122h gt得:t2g水平飞行射程由高度和水平初速度共同决定:
xv0tv02h
g
③平抛物体任意时刻瞬时速度v与平抛初速度v0夹角θa的正切值为位移s与水平位移x夹角θ正切值的两倍即tan2tan
④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
12gtgt2xs 证明:tanv0s2⑤平抛运动中,任意一段时间内速度的变化量ΔvgΔt方向恒为竖直向下(与g向)任意相同时间内的Δv都相同(包括大小、方向),如右下图。

⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。
A
y
x θ vy α vx v θ
V0v0
V1VV2VV3V
如左上图:所以t2v0tan

gtan(avyvxgt v0所以tan(a2tanθ为定值故a也是定值与速度无关。
速度v的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,tan变大,,速度v与重力 的方向越来越靠近,但永远不能到达。
⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个运动过程中机械能守恒。
7、平抛运动的实验探究
如图所示,用小锤打击弹性金属片,金属片把A球沿水平方向抛出,同时B球松开,自由下落,AB两球同时开始运动。观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直方向上的运动为自由落体运动。


如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是AB两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,AB两球仍会在水平面上相遇,这说明平抛运动在水平方向上的分运动是匀速直线运动。


8、类平抛运动
1有时物体的运动与平抛运动很相似,也是在某方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动。对这种运动,像平抛又不是平抛,通常称作类平抛运动。
2)类平抛运动的受力特点:
物体所受合力为恒力,且与初速度的方向垂直。 3)类平抛运动的处理方法:
在初速度v0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速aF。处理时和平抛运动类似,但要分析清楚其加速度的大小和方向如何,分别运用m两个分运动的直线规律来处理。


第三模块:圆周运动
做圆周运动题目时要知道向心力的来源,匀速圆周运动物体所受的合力方向即向心力方向,要会用矢量合成与分解的方法就向心力(或知道向心力求某个分力),此部分为本章关键,同学们务必理解并多做题目加深理解。 <> 匀速圆周运动
1、定义:物体运动轨迹为圆称物体做圆周运动。 物体做圆周运动的条件:三个基本点
物体受到的合外力大小不变方向始终垂直于物体的速度方向且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内) 2、分类:
匀速圆周运动:匀速圆周运动是重点
质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。
变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.此部分要掌握竖直平面内的圆周运动及生活中的圆周运动) 3、描述匀速圆周运动的物理量
1)线速度(v:知道定义,定义式,是矢量(方向沿切线方向)
2)角速度(ω,又称为圆频率):知道定义,定义式,是矢量,物理意义(描述质点绕圆心转到的快慢) 3)周期(T:做匀速圆周运动的物体运动一周所用的时间叫做周期。 4)频率(f,或转速n:物体在单位时间内完成的圆周运动的次数。

各物理量之间的关系:
s2r2rfrtTrv2t2ftT v注意:计算时,均采用国际单位制,角度的单位采用弧度制。 5)圆周运动的向心加速度
①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。
v22222rv②大小:anr2fr2nrrT方向:其方向时刻改变且时刻指向圆心。
2

对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量;物体的另一加速度分量为切向加速度a,表征速度大小改变的快慢(对匀速圆周运动而言,
a=0
6)圆周运动的向心力
匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力,对于一般的非匀速圆周运动,物体受到的合力的法向分力Fn提供向心加速度(下式仍然适用),切向分力F提供切向加速度。
v222m2rmvm向心力的大小为:Fnmanm向心rm2frrT力的方向时刻改变且时刻指向圆心。(根据矢量合成求出Fn在根据题目要求即可解题)

<> 离心运动(理解该现象)
1定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。 2、本质:①离心现象是物体惯性的表现。
②离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。
离心运动并不是受到什么离心力,根本就没有这个离心力 3、条件:
当物体受到的合外力Fnman时,物体做匀速圆周运动; 当物体受到的合外力Fnman时,物体做离心运动(洗衣机脱水) 当物体受到的合外力Fnman时,物体做近心运动(卫星的变轨)
实际上,这正是力对物体运动状态改变的作用的体现,外力改变,物体的运动情况也必然改变以适应外力的改变。


2第四模块:万有引力定律 人造地球卫星
<> 基础知识
1、开普勒行星运动三定律简介(轨道、面积、比值)
第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即r3k 2Tk只与中心天体的质量有关,与其他任何都无关,易考选择题
2、万有引力定律及其应用(知道内容,公式及适用条件)
(1 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。FGMm
2r

(2定律的适用条件严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离对于均匀的球体,r是两球心间的距离.
当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F近为无穷大。
(3 地球自转对地表物体重力的影响。此部分了解,考选择题,尤其是赤道处 重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力 F=mRcos·ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg,其方向与支持力N反向,应竖直向下,而不是指向地心。
由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极R逐渐减小,向心力mRcos·ω2减小,重力逐渐增大,相应重力加速度g也逐渐增大。
ω
N O′
F
m mg O F

在赤道处,物体的万有引力分解为两个分力Fm2g刚好在一条直线上,则有FFm2g,所以m2g=FFGm1m2r2m22
物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F和支持力N是一对平衡力,此时物体的重力mgNF
ω F
o ω
N F
N
o


综上所述
重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。

重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。
由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,

<>万有引力定律的应用:

基本方法:卫星或天体的运动看成匀速圆周运动, F=F(类似原子模型 方法:轨道上正常转:
Mmv2422G2mmrm2rrrT
地面附近:G
Mm= mg GM=gR2 (黄金代换式;只要题目中出现地面附近几个字必须2R用上式 框中内容是本章关键,所有题目都是围绕上面的等式设置的 1)天体表面重力加速度问题
通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2gGm1m2 R2g=GM/R2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/R+h2,比较得gh=r2·g RhMmMg=G,由此推得两个不RR22设天体表面重力加速度为g,天体半径为R,由mg=GgRM同天体表面重力加速度的关系为 gRM21212212
2)计算中心天体的质量(根据题目中给出的条件选择公式
某星体m围绕中心天体m做圆周运动的周期为T,圆周运动的轨道半径为r,则:
mm42r32G2m r得:m2GTTr例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。 可以注意到:环绕星体本身的质量在此是无法计算的。
2M3r2M计算中心天体的密度(只要出现密度就要想到质量ρ===4VGT2R3 3R334)由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M.若知道行星的半径则可得行星的密度

<>人造地球卫星。

1卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有
GmM2222mammrm(r
rTr23、表征卫星运动的物理量:线速度、角速度、周期等:选择题考点
1)向心加速度ar的平方成反比。只与卫星离地球的半径有关,与卫星的质量有关,M是中心天题质量
a=GMGMr取其最小值时,取得最大值。 a=g=9.8m/s2 amax=22rR2)线速度vr的平方根成反比 v=GMh↑v↓
r
GM=Rg=7.9km/sR3r取其最小值地球半径Rv取得最大值。 vmax=一宇宙速度的计算公式
3)角速度r的三分之三次方成百比
=
GMh↑ω↓ 3rGMg3=≈1.23×10rad/s 3RRr取其最小值地球半径R时,取得最大值。max=r34)周期Tr的二分之三次方成正比。 T=2h↑T↑
GMr取其最小值地球半径R时,T取得最小值。 (卫星绕地球运动的周期必须大于等于84分钟;可出选择题)
R3RTmin=2=2≈84 min
gGM应该熟记常识:
地球公转周期1年, 自转周期1=24小时=86400s 地球表面半径6.4103km
表面重力加速度g=9.8 m/s2 月球公转周期30 4.宇宙速度及其意义 (1三个宇宙速度的值分别为
第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度
物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:
v17.9km/s

第一宇宙速度的计算.(知道计算方法)
方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力. GmMv2GM=mv=。当h↑v↓,所以在地球表面附近卫星的速度是它运行rhrhrh2的最大速度。其大小为r>>h(地面附近)时,V1GM=79×103m/s r方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.
v12.当r>>h时.gh≈g 所以v1gr=79×103m/s mgmrh第二宇宙速度(脱离速度):脱离地球,其值为: v211.2km/s 第三宇宙速度(逃逸速度):挣脱太阳系,其值为:v316.7km/s 5.同步卫星(所有的通迅卫星都为同步卫星)卫星中最重要的
同步卫星。同步的含义就是和地球保持相对静止(又叫静止轨道卫星)所以其周期等于地球自转周期,既T=24h 特点
1)轨道平面:同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。 这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。

2)地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同,T=24h 3同步卫星必位于赤道上方h处,且h是一定的.(可认为36000Km GMmr23m2rr
GM
2
hrR35800km
4)地球同步卫星的线速度:环绕速度

Mm2GMG2mv3.08km/srrr5行方向一定自西向东运行

<>人造天体在运动过程中的能量关系

当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。
同样质量的卫星在不同高度轨道上的机械能不同。其中卫星的动能为EKGMm,由于2r重力加速度g随高度增大而减小,所以重力势能不能再用Ek=mgh计算,而要用到公式EPGMm(以无穷远处引力势能为零,M为地球质量,m为卫星质量,r为卫星轨道半r径。由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。)因此机械能为EGMm。同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能2r越大,发射越困难。





第五模块:机械能知识点总结
<> (求解力做功时首先要会对物体受力分析,并知道力与物体的位移)
1、概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2、条件:. 力和力的方向上位移的乘积
3、公式:W=Fx cos θ F—某力(要为恒力,单位为牛顿(N
x—物体运动的位移,一般为对地位移,单位为米(m —力与位移的夹角
4功是标量,但它有正功、负功。力对物体做负功,也可说成“物体克服某力做功(摩擦力做功用到的最多) [0, 2时,即力与位移成锐角,力做正功,功为正;
时,即力与位移垂直,力不做功,功为零; 2 (,]时,即力与位移成钝角,力做负功,功为负;
25、功是一个过程所对应的量,因此功是过程量。
6、功FS θ有关,与物体所受的其它外力、速度、加速度无关。 7、几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 W=W1+W2++Wn W= FScos θ 8、了解常见力做功的特点:
1一类是与势能相关的力,如重力、弹簧的弹力、电场力等,它们的功与路程无关系,只与位移有关。
重力做功和路径无关,只与物体始末位置的高度差h有关:W=mgh,当末位置低于初位置时,W0,即重力做正功;反之则重力做负功。 2)摩擦力做功 静摩擦力做功的特点
静摩擦力可以做正功,也可以做负功,还可以不做功。
在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能. 滑动摩擦力做功的特点
滑动摩擦力可以对物体做正功,也可以对物体做负功,当然也可以不做功。 做功与物体的运动路径有关。滑动摩擦力做功要看物体运动的路程,这是摩擦力做功的特点,必须牢记。
一对滑动摩擦力做功的过程中,如图所示,上面不光滑的长木板,放在光滑的水平地面上,一小木块以速度V0从木板的左端滑上木板,当木块和木板相对静止时,木板相对地
面滑动了S,小木块相对木板滑动了d,则由动能定理知:

滑动摩擦力对木块所做功为:
Ek木块f(sd
滑动摩擦力对木板所做功为:
Ek木板fs
得:Ek木板Ek木块fd
式表明木块和木板组成的系统的机械能的减少量等于滑动摩擦力与木块相对木板的位移的乘积。这部分减少的能量转化为内能。 3)一对作用力和反作用力做功的特点:
作用力与反作用力同时存在,作用力做功时,反作用力可能做功,也可能不做功,可能做正功,也可能做负功,不要以为作用力与反作用力大小相等、方向相反,就一定有作用力、反作用力的功数值相等。

一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正 4)斜面上支持力做功问题:
斜面固定不动,物体沿斜面下滑时斜面对物体的支持力不做功
斜面置于光滑的水平面上,一个物体沿斜面下滑,物体受到的支持力对物体做负功,如图所示,物体下滑到斜面底端,斜面由于不受地面摩擦,后退一段距离,需要注意的是位S是物体相对于地面的位移,不要认为是斜面,否则会得出物体受到的支持力做功为0的错误结论。
F S Q P F


<> 功率
1、概念:功跟完成功所用时间的比值,表示力(或物体做功的快慢。(选择题) 2、公式:PW平均功率
t PFcos(平均功率或瞬时功率)

3、单位:瓦特W 4、分类:
额定功率:指发动机正常工作时最大输出功率
实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,PP 5、应用:(考的可能性很大,可自己找相关题目练习)注意:两种情况最大速度相同 1机车以恒定功率启动时,由PFP为机车输出功率,F为机车牵引力,为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力Ff时,速度不再增大达到最大值max,则maxP/f
2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F恒定为maf,速度不断增加汽车输出功率PF随之增加,当PP额定时,F开始减小但仍大于f因此机车速度继续增大,直至Ff时,汽车便达到最大速度max,则maxP/f

<> 重力势能 单位:焦耳(J
1、定义:物体由于被举高而具有的能,叫做重力势能。 2、公式:EPmgh h——物体具参考面的竖直高度 3、参考面
a重力势能为零的平面称为参考面;
b选取:原则是任意选取,但通常以地面为参考面
若参考面未定,重力势能无意义,不能说重力势能大小如何
选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。 4、标量,但有正负。 重力势能为正,表示物体在参考面的上方;
重力势能为负,表示物体在参考面的下方; 重力势能为零,表示物体在参考面的上。
5、重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。 6、重力做功与重力势能的关系:WGEP1EP2
重力做正功时,物体重力势能减少;重力做负功时,物体重力势能增加。

<> 弹性势能(会用图像法求弹簧的弹性势能)
1、概念:发生弹性形变的物体的各部分之间,由于弹力的相互作用具有势能,称之为弹性势能。 2、弹簧的弹性势能:EP12kx
2影响弹簧弹性势能的因素有:弹簧的劲度系数k和弹簧形变量x 3、弹力做功与弹性势能的关系:WFEP1EP2
弹力做正功时,物体弹性势能减少;弹力做负功时,物体弹性势能增加。 4势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。

<> 动能(尤其是动能定理,一定要掌握,此部分是物理考试中的重点且常和机械能守恒结合)
1、概念:物体由于运动而具有的能量,称为动能; 表达式:EK2、动能定理(即合外力做功与动能关系)WEK2EK1
3、理解:①F在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
F做正功时,物体动能增加;F做负功时,物体动能减少。
4、适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。

<> 机械能
1、机械能包含动能和势能(重力势能和弹性势能)两部分,即EEKEP
2机械能守恒定律:知道机械能守恒的条件,只用条件符合的才能用守恒定律否则不能用) 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变, E1E2 3、机械能守恒条件: 做功角度:只有重力或弹力做功,无其它力做功; 外力不做功或外力做功的代数和为零;
1m2
2

本文来源:https://www.2haoxitong.net/k/doc/7b22792403f69e3143323968011ca300a6c3f62a.html

《(完整版)高中物理必修2知识点归纳.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式