正在进行安全检测...

发布时间:1714240855   来源:文档文库   
字号:

时间延缓的广义相对论效应
由地球发射雷达脉冲,到达行星后再返回地球,测量雷达往返的时间,比较雷达波远离太阳和靠近太阳两种情况下,回波时间的差异.太阳引力将使回波时间加长,称为雷达回波延迟.例如地球与水星之间的雷达回波的最大时间差可达240s.这类测量是目前对广义相对论中空间弯曲的最好检验.70年代末,测量值与理论值之差约为1%,到80年代,利用火星表面的“海盗着陆舱”宇宙飞船,已将回波延迟测量的不确定度从5%减小到0.1%大大提高了检测精度.空间探测器的出现使得测量太阳引力场更显著一些的时间弹性效应成为可能.用雷达发射器向位于太阳另一侧的一个空间探测器发出一个无线电讯号,讯号被探测器反射并返回地球.全程的时间在地球上记量.被太阳引力变曲的几何使得这个时间与讯号在平坦真空中传播的时间不同.这个实验是在1971年用水手号探测器进行的,它再次证实了时间延迟效应.1968年沙皮罗设计的广义相对论的第四个验证“雷达波传播中的时间延迟”取得成功.它证实广义相对论的预言是正确的.这个预言是说,由于光线在引力场中一般沿曲线传播,与无引力场时相比,其传播时间要变慢.所有这些广义相对论实验都只涉及太阳系的引力场,而这个场是处处都很弱的,也是定常态的(即不随时间变化.这个繁荣的实验引力时代激发了理论家们的想象,许多引力理论被提出来与Einstein理论竞争.那些理论大多含有一些附加参量,可以由发明者随意调节.这类理论中最著名的一个是由德国物理学家帕索·约丹和法国物理学家叶维·台里提出,后来由美国物理学家卡尔·布兰斯和罗伯特·迪克所发展的(迪克本人对实验引力的发展有着卓越的贡献.由于附加参量的灵活性,那些理论可以被调节得能说明太阳系里观测到的所有效应.那么,怎么能确定究竟那一个理论是正确的呢?只有通过分析所有这些理论对强的、动态的(即随时间迅速变化引力场情况所作的预测,才得作出回答.然而在相当长的时期里,自然界并未给我们提供合适的检验场历,直到1974年双脉冲星的发现,情况才有大变.这两个靠得很近且相互绕转的中子星的轨道周期在变短(由于辐射出引力波,双星系统的能量减少,观测结果与Einstein论一致,而与所有其他参与竞争的理论都不相符

1

I.夏皮洛于1964年建议,测量雷达信号传播到内行星再反射回地球所需的时间,来检验广义相对论,为此他进行了长期的测量.70年代末期,这类测量所得的数据同广义相对论理论值比较,相差约1.这类实验也可以在地球引力场中,通过测量人造卫星的雷达回波的时间延迟来进行. 有一高塔和两个一模一样的钟,将两钟调到同一时间,然后一个放在塔顶,一个放在塔底,请问哪个快呢?还是一样快呢?(A.根据常识人们会说两个都一样快.(B.根据钟摆的等时性
,下边的g大一些,T小一些,下边的快.(C.根据狭义相对论,这两个钟没有相对运动,一样快.(D.若考虑地球自转,塔顶的钟线速度大一些,根据狭义相对论,上边的钟慢一些.(E.根据广义相对论,在象地球这样的大质量的物体附近,时间显得流逝得更慢一些,也就是下边的钟慢一些.笔者认为E的观点是正确的. 1、很多科学家认为除了速度可以影响时间进程之外,重力也会放慢时间前进的脚步,计算表明地球的重力每300年可以让钟表慢1微秒,这一点已在实验中得到验证.1971美国的学者曾做过一个实验,在环球飞行的飞机上放了4个与地面校对好且精度极高的原子钟,虽然飞机的速度无法与光的速度相比,但实验结束时,人们还是惊奇地发现飞机上的钟比地面慢了59纳秒.1976年美国物理学家罗伯特-维索特向太空中发射了一枚载有时钟的火箭,他观察到这个时钟与放置在地球上同样的时钟相比,多获得了1/10微秒.全球定位系统——GPS的应用也已普及化了,许多城市的公共汽车、出租车上都安装了它.早期的GPS接收器确定物体位置的误差是在15米范围内,这个误差实际是需要爱因斯坦相对论来修正.每个GPS卫星载原子钟每天要比地球上的钟慢7微秒.卫星所受的较弱引力添加了另一种相对论效应,使得时钟每天快45微秒.因此,为了得到准确的GPS数据,将星载时钟每天拨回38微秒的修正项必须计算在内.因为广域增强系统依赖从地面基站发出的额外信号,配备了该系统的GPS接收器,就消除了相对性误差.根据爱因斯坦的相对论,原子
2

本文来源:https://www.2haoxitong.net/k/doc/79982e0d32687e21af45b307e87101f69f31fb73.html

《正在进行安全检测....doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

相关推荐