硕士研究生入学考试自命题考试大纲

发布时间:   来源:文档文库   
字号:
2014年硕士研究生入学考试自命题考试大纲
考试科目代码:[728]考试科目名称:物理化学一、考试形式与试卷结构1试卷成绩及考试时间:
本试卷满分为150分,考试时间为180分钟。2答题方式:闭卷、笔试3试卷内容结构化学热力学约48%统计热力学约7%电化学约20%化学动力学约20%胶体与界面化学约5%4题型结构
a:填空题,5小题,每小题4分,共20b:单选题,10小题,每小题2分,共20
c:解答题(包括证明题6~7小题,每小题20分或10分,共110二、考试内容与考试要求(一)化学热力学部分
1、热力学第一定律及其应用考试内容
热力学的一些基本概念,可逆过程,温度,焓,热容,Carnot循环,Joule-Thomson效应,等压热效应,等容热效应,反应进度,标准摩尔焓变,标准摩尔生成焓,标准摩尔燃烧焓,键焓,热力学第零定律,热力学第一定律及其对理想气体、相变过程和化学反应过程的应用,Hess定律,Kirchhoff定律,能量均分原理。考试要求
理解并掌握热力学的一些基本概念:系统、环境、热、功、热力学能、焓、热容、状态函数及其特性、强度性质、广度性质、过程、途径、准静态过程、可逆过程与不可逆过程、过程方程式、热机效率、冷冻系数、节流过程、反应进度、标准摩尔焓变、标准摩尔生成焓、标准摩尔燃烧焓、键焓等。
熟练掌握一些基本定律和原理:热力学第零定律、热力学第一定律、Hess定律、Kirchhoff定律、能量均分原理。
熟练应用热力学第一定律:计算理想气体在自由膨胀、等温、等压、绝热、等容、节流膨胀、卡诺循环等过程中的ΔU,ΔHQW等;可逆相变及不可逆相变过程的ΔU,ΔHQW;等温或非等温化学反应过程的反应焓变、终态温度等。2、热力学第二定律及其应用考试内容
自发变化,热温商,熵,规定熵,Helmholtz自由能,Gibbs自由能,热力学概率,温-熵图,特性函数,特征变量,熵流、熵产生等基本概念。热力学第二定律,热力学第三定律,熵增原理,卡诺定理,Boltzmann熵定理等基本定律和原理。热力学基本方程,Maxwell系式,Gibbs-Helmholtz方程等基本方程式。熵判据,Gibbs自由能判据,Helmholtz自由能判据及特性函数判据等判断自发变化方向和限度的判据。理想气体的各种过程、相变过程、化学反应过程的ΔS,ΔG和ΔA等的计算。考试要求
掌握并理解自发变化、熵、规定熵、Helmholtz自由能、Gibbs自由能、热力学概率、

特性函数、特征变量、熵流、熵产生等基本概念及其物理意义。熟练掌握热力学第二定律的各种表述及其意义,了解热力学第三定律的内容。能熟练地计算理想气体的各种过程、相变过程、化学反应过程的ΔSΔG和ΔA等状态函数变化,并熟练应用相应热力学判据判断过程的可逆性及自发变化的方向。能熟练应用热力学基本方程、Maxwell关系式、重要状态函数的定义式等,利用热力学方法进行一些状态函数间关系的推导证明。3、多组分系统热力学及其在溶液中的应用考试内容
多组分系统组成的表示法,偏摩尔量及其物理意义,化学势及其物理意义,各类系统中组分化学势的表达式及其标准状态,逸度、逸度因子、理想液态混合物、理想稀溶液、活度、活度因子、超额函数等的定义,理想液态混合物的通性,稀溶液的依数性,吉布斯集合公式Gibbs-Duhem公式,Raoult定律和Henry定律,分配定律。考试要求
了解并掌握用化学势讨论平衡问题的方法,如依数性公式的推导及应用;各组分化学势的表示及其各种标准态;等温、等压下由纯组分混合制备混合物或溶液时系统ΔG的计算。理解偏摩尔量概念及其物理意义;吉布斯集合公式和Gibbs-Duhem公式的物理意义及其应用;理想液态混合物和理想稀溶液的的定义及物理意义;掌握Raoult定律和Henry定律及其各种应用;理想液态混合物的性质;稀溶液依数性的概念及其通过依数性测定溶质分子量的方法;逸度及逸度因子的的概念,活度的概念及其测定的方法,超额函数的概念,无热溶液、正规溶液的特点。掌握分配定律及其应用。4、相平衡考试内容
多相平衡的一般条件,相律及其应用,Clapeyron方程和Clapeyron-Clausius方程,外压与蒸汽压的关系,单组分系统的相图,超临界状态,杠杆规则,二组分系统的气-液相图和固-液相图及其应用,等边三角形坐标表示法及三组分系统的相图及应用,二级相变。考试要求
了解相律的推导过程;能看懂部分互溶的三液体系统和二固体和一液体的水盐系统相图并了解其应用;初步了解二级相变。掌握相、组分数和自由度等概念及理解其意义,并能利用相律进行相关计算;掌握相律在相图中的应用;掌握单组分系统相图的特征;熟练掌握二组分体系的气-液相图和固-液相图的意义及相图的绘制和应用;掌握杠杆规则及其应用。握三组分系统等边三角形坐标表示法;熟练掌握Clapeyron方程和Clapeyron-Clausius程及其应用。5、化学平衡考试内容
反应进度,化学反应的亲和势,化学反应的平衡条件、平衡常数、等温方程式,平衡常数的表示式,复相化学平衡,标准摩尔生成Gibbs自由能、标准状态下反应的Gibbs自由能变化值,各种因素如温度、压力及惰性气体对化学平衡的影响,同时化学平衡,反映的耦合,反应有利温度及标准状态下反应的Gibbs自由能变化值的近似计算或估算。考试要求
了解如何用化学势讨论化学平衡,比如化学反应等温式的导出;反应进度的概念;三类反应生产条件的理论分析(常温常压气相反应,液相反应,高温高压气相反应);对同时平衡、反应耦合和对复杂体系近似计算等的处理方法。掌握用化学反应等温式判断反应进行的方向;各种平衡常数的表示及其相互关系;温度对平衡常数的影响及其应用;压力、惰性气体等对平衡的影响;由标准摩尔生成Gibbs自由能计算平衡常数的方法;从平衡常数计算平衡转化率和平衡组成的方法。

6、统计热力学基础考试内容
统计系统的分类,统计热力学的研究方法及基本假定,最概然分布,摘取最大项法及其原理,量子统计方法及其应用,配分函数的定义及其物理意义,配分函数与热力学函数的关系,各种运动形式的配分函数的计算方法及其在简单分子热力学函数计算方面的应用,单原子和双原子分子的统计熵的计算,自由能函数,热函函数,用配分函数计算标准状态下反应Gibbs自由能变化值和平衡常数。考试要求
了解热力学三大定律的统计解释,量子统计方法及其应用。掌握统计热力学的基本假定,宏观态、微观态和热力学几率等基本概念,Maxwell-Boltzmann分布律的物理意义,配分函数的概念和各种运动形式的配分函数计算以及配分函数与热力学函数的关系,单原子和双原子分子统计熵的计算方法,从配分函数计算理想气体反应的平衡常数的方法。7、电解质溶液考试内容
电化学中的基本概念,原电池,电解池,离子的电迁移率,离子迁移数及其测定,电导,电导率,摩尔电导率,电导测定的应用,电解质的平均活度和平均活度因子,离子强度,离子氛,Faraday电解定律,离子独立移动定律,Ostwald稀释定律,强电解质溶液理论:Debye-Hükel离子互吸理论,Debye-Hükel-Onsager电导理论,Debye-Hükel极限公式。考试要求
了解迁移数的意义及常用的测定迁移数的方法,了解强电解质溶液理论的基本内容及适用范围。掌握电化学的基本概念,Faraday电解定律,电导率和摩尔电导率的意义及它们与溶液浓度的关系;掌握迁移数与摩尔电导率、离子电迁移率之间的关系,并能熟练进行计算;熟悉离子独立移动定律及电导测定在如下几方面的应用:水纯度的检验,弱电解质的解离度和解离常数的计算,难溶盐溶解度的测定及计算,电导滴定;理解电解质的离子平均活度、平均活度因子的意义及其计算方法,会计算离子强度和使用Debye-Hükel极限公式。8、可逆电池的电动势及其应用考试内容
可逆电池形成的必要条件,可逆电极的类型,电池的书写方法。电动势的测定,可逆电池热力学,电动势产生的机理和氢标准电极的作用,电动势测定的应用。考试要求
了解对消法测电动势的基本原理和标准电池的作用,电动势产生的机理和氢标准电极的作用,液体接界电势的概念及消除方法。掌握可逆电池的书写方法,熟练、正确地写出电极反应和电池反应,能熟练地应用Nernst方程计算电极电势和电池的电动势,利用电化学测定数据计算热力学函数的变化值,可由电池反应设计电池。熟悉电动势测定的主要应用,利用相应测定数据计算电解质溶液的平均活度因子、难溶盐的活度积以及弱酸或弱碱的解离常数、溶液的pH等。9、电解与极化作用考试内容
分解电压,极化作用,极化曲线,电解时电极上的竞争反应,金属的电化学腐蚀、防腐与金属的钝化,化学电源。考试要求
了解分解电压的意义,极化现象,极化作用及其分类,超电势及其影响因素,氢超电势理论,电化学腐蚀的原因及防腐的方法,化学电源的类型及其应用。了解并掌握产生极化的原因及极化现象的应用,电解池和原电池极化曲线的异同点,Tafel公式的物理意义及其在

计算氢超电势方面的应用,析出电势与电极上的放电次序以及在金属离子分离方面的应用。10、化学动力学基础(一)考试内容
化学动力学的一些基本概念:基元反应,非基元反应,反应速率,反应机理,反应级数,反应分子数,速率常数,半衰期,活化能等。具有简单级数的反应,反应级数的测定,对峙反应,平行反应,连续反应,链反应,温度对反应速率的影响,拟定反应历程的一般方法,及处理反应历程时一些常用的近似处理方法。基元反应的质量作用定律,微观可逆性原理,反应独立共存原理。考试要求
了解基元反应,非基元反应,反应速率,反应机理,反应级数,反应分子数,半衰期等基本概念,了解速率常数及其物理意义和影响因素,理解活化能的概念、基元反应活化能的物理意义及其估算方法。熟练掌握及应用基元反应的质量作用定律、微观可逆性原理和反应独立共存原理。掌握零级、一级、二级、三级等具有简单级数的反应的特点,能利用实验数据确定反应级数,并能熟练地利用速率方程进行相关计算。对于对峙反应,平行反应,连续反应要掌握它们各自的特点,并进行一些简单计算。掌握温度对反应速率的影响,对复合反应能确定有利于制备目标产物的温度条件,明确Arrhenius公式中各项的物理意义并掌握活化能的求算方法。掌握链反应的特点,会用稳态近似、平衡假设和速控步等近似方法从复杂反应的机理推导速率方程。11、化学动力学基础(二)考试内容
简单碰撞理论、过渡态理论、单分子反应的Linedemann理论和RRKM理论及与上述理论相关的一些基本概念,分子反应动态学简介,在溶液中进行的反应、光化学反应和催化反应动力学,快速反应的几种测试手段。考试要求
了解单分子反应的RRKM理论的基本要点,了解弛豫法适用的条件及用弛豫法计算快速对峙反应的速率常数,了解分子反应动态学的发展概况、常用实验方法和该研究的理论意义。了解溶液反应的特点、溶剂对反应的影响,会利用原盐效应判断离子强度对溶液中有离子参加的反应速率的影响。了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解催化剂的特征、各类催化反应的特点和产生化学振荡的原因。掌握简单碰撞理论的基本要点,过渡态理论的基本要点和热力学、统计热力学两种处理方法,会利用简单碰撞理论和过渡态理论计算一些简单反应的速率常数,掌握活化能、阈能和活化焓等能量之间的关系。掌握单分子反应的Linedemann理论的基本要点。掌握量子产率的计算并会处理简单的光化学反应的动力学问题。会处理酶催化反应的动力学问题。12、表面物理化学考试内容
表面化学中的一些基本概念,如比表面、表面张力、表面Gibbs自由能、润湿、铺展、吸附等,表面热力学的基本公式,弯曲表面上的附加压力和蒸汽压,溶液的表面吸附,液-液界面的性质,膜,液-固界面现象,表面活性剂及其作用,固体表面的吸附,气-固相表面催化反应。考试要求
理解表面化学中的基本概念,掌握表面张力和表面Gibbs自由能概念的异同点,了解表面张力与温度的关系。了解表面活性的概念及其原理,表面活性剂的分类及其几种重要作用。了解液-液、液-固界面的铺展与润湿情况,理解气-固表面的吸附本质及吸附等温线的主要类型,了解Freundlich等温式和乔姆金方程式及其适用的吸附类型,了解化学吸附和物理

吸附的区别。
掌握表面热力学的基本公式,并能进行一些热力学计算。掌握Young-Laplace公式,Kelvin公式和Gibbs吸附等温式,能对一些常见的表面现象进行解释以及进行一些简单计算。掌握Langmuir单分子吸附理论要点并能进行简单计算,掌握BET多分子层吸附理论要点及其主要应用。掌握气-固相表面催化反应的基本步骤、反应机理,能解释简单的表面反应动力学,以及利用反应机理、基元步骤活化能和吸附热等计算气-固相表面催化反应的表观活化能。
13、胶体分散系统和大分子溶液考试内容
胶体的基本特性,溶胶的制备与净化,溶胶的动力性质、光学性质和电学性质,双电层理论和ζ电势,溶胶的稳定性和聚沉作用,乳状液,大分子溶液,凝胶,Donnan平衡和聚电解质溶液的渗透压,流变学简介,纳米材料及纳米粒子。考试要求
了解分散系统的大概分类,了解溶胶的制备、净化方法及其应用。了解憎液溶胶的胶团结构,其在动力性质、光学性质和电学性质等方面的特点,以及如何利用相关特点对胶体进行粒度大小、带电情况等方面进行研究,了解电泳、电渗等实验技术在工业、生物学、医学等方面的应用。了解双电层理论模型及相关概念,了解溶胶在稳定性方面的特点及胶体稳定性的DLVO理论。了解乳状液的种类、乳化剂的作用,凝胶的分类、形成和主要性质。了解大分子溶液和溶胶的异同点,大分子物质平均摩尔质量的种类及其分布的测定方法,大分子溶液黏度的几种表示法。了解Donnan平衡,Newton流体和非Newton流体的区别及常见的流体类型。简单了解纳米材料的特性及制备方法。掌握丁铎尔效应及其应用,掌握ζ电势等概念以及电解质对溶胶稳定性的影响,会判断电解质聚沉能力的大小。掌握如何用渗透压法准确测定聚电解质的数均摩尔质量。三、参考书目
[1]傅献彩,沈文霞,姚天扬,侯文华.物理化学(第五版)上、下册.高等教育出版社,2006
[2]胡英主编.物理化学(第四版).高等教育出版社,1999
[3]孙德坤,沈文霞,姚天扬,侯文华.物理化学学习指导.高等教育出版社,2007[4]范崇政,杭瑚,蒋淮渭.物理化学概念辨析·解题方法·应用实例(第4版).中国科学技术大学出版社,2010
2014年硕士研究生入学考试自命题考试大纲考试科目代码:[847]考试科目名称:分析化学一、考试形式与试卷结构1试卷成绩及考试时间:
本试卷满分为150分,考试时间为180分钟。2答题方式:闭卷、笔试3试卷内容结构
(一)化学分析部分50%(二)仪器分析部分50%4题型结构
a:单选题,15小题,每小题2分,共30b:填空题,10小题,每小题3分,共30c:简答题,6小题,每小题5分,共30

d:计算题,6小题,每小题8分,共48e:论述题,1小题,每小题12分,共12二、考试内容与考试要求(一)化学分析1、概论考试内容
分析化学的任务和作用,分析方法的分类与分析化学方法的选择,分析化学的发展简史与发展趋势;分析测试的全过程及分析结果的表示;滴定分析的特点,滴定分析对化学反应的要求,滴定分析的方式;基准物质、标准溶液的配制,浓度的表示形式及相互的换算,滴定分析中待测组分含量的计算。考试要求
了解分析化学的任务、作用及分析化学的发展趋势,认识分析测试的全过程及分析结果的表示;掌握分析结果的表达方式及正确计算分析结果;了解基准物质、标准溶液等概念,掌握标准溶液配制方法、浓度的表示形式及相互的换算,掌握滴定分析中滴定剂与被滴定物的计量关系及有关计算。
2、分析试样的采集与制备考试内容
分析试样采集的作用与方法,固体试样的制备过程及缩分公式的应用;试样的分解方法及要求。考试要求
了解试样的采集在分析测试工作中的重要作用,掌握试样采集的方法与工作原则;掌握固体试样的制备过程及缩分公式的应用;掌握分解试样的基本方法及工作原则。3、分析化学中的误差与数据处理考试内容
误差的种类及特点、误差来源及减小误差的方法,准确度及精密度的基本概念,各种误差及偏差的计算;有效数字的概念及有效数字的修约规则和运算规则;总体和样本的统计学概念,随机误差的正态分布的特点及区间概率的计算;t分布的特点、总体平均值的估计;t检验法和F检验法及其运用;可疑值的取舍方法;系统误差、随机误差及极值误差的传递。考试要求
了解误差与偏差的概念,了解准确度及精密度的概念,掌握各种误差及偏差的计算;断误差的种类及分析误差的来源,掌握提高分析结果准确度及精密度的方法及措施;了解有效数字的修约与运算规则,正确表达实验数据;了解随机误差的正态分布特点,掌握区间概率的相关计算;了解t分布的特点,掌握总体平均值的存在区间与置信度的相关计算;掌握分析化学中常用的显著性检验方法(t检验法和F检验法掌握4法、Grubbs法和Q检验法进行可疑值的取舍;掌握系统误差、随机误差及极值误差的传递规律,并正确估算分析结果的误差;初步学会用误差理论指导和设计实验方案。4、分析化学中的质量保证与质量控制考试内容
分析全过程的质量保证与质量控制;标准方法与标准物质;不确定度和溯源性。考试要求
了解分析全过程的质量保证与质量控制;掌握标准方法与标准物质;了解不确定度和溯源性。
5、酸碱滴定法考试内容

活度和活度系数的概念,酸碱质子理论与酸碱的离解平衡,质子方程式;分布分数的概念及计算,pH值对溶液中各存在形式的影响;溶液中H+浓度的有关计算;缓冲溶液的性质、组成以及pH值的计算,缓冲容量的概念及影响缓冲容量的因素;酸碱指示剂的变色原理、变色范围及指示剂的选择原则;酸碱滴定过程中pH值的计算,滴定曲线的绘制、滴定突跃及影响滴定突跃的因素。终点误差的概念及计算,酸碱滴定的方式及酸碱滴定法的应用。考试要求
了解活度和活度系数的概念,掌握相关的计算;正确写出溶液的质子平衡式;了解分布分数的概念、作用并掌握相关计算;掌握一元弱酸(溶液、多元弱酸(溶液、弱酸(混合溶液、两性物质溶液的pH值的计算;了解缓冲溶液的作用、特性、组成以及pH值的计算;掌握酸碱滴定原理、酸碱滴定过程中pH值的计算,分析影响滴定突跃的因素,正确选择指示剂,掌握酸碱滴定终点误差的计算,了解酸碱滴定法的具体应用;能设计常见酸、碱的滴定分析方案。6、络合滴定法考试内容
分析化学中常用的络合剂的类型,氨羧络合剂的特点及EDTA与金属离子络合物的特点;络合反应稳定常数、各级络合物的分布;络合平衡中的副反应系数和条件稳定常数的概念及计算;金属离子指示剂的作用原理及选择原则;络合滴定法的基本原理,影响滴定突跃的因素,络合滴定终点误差的计算,络合滴定中酸度的控制,提高络合滴定选择性的途径,络合滴定的方式及其应用。考试要求
了解分析化学中常用的络合剂的类型,了解氨羧络合剂的组成特点及EDTA与金属络合物的特性;了解稳定常数与累积稳定常数的关系,掌握各级络合物的分布规律;熟练掌握络合平衡中的副反应系数和条件稳定常数的概念与计算;了解金属离子指示剂的作用原理及选择原则,掌握络合滴定法的基本原理和滴定过程金属离子浓度的计算;分析影响滴定突跃的因素,掌握络合滴定终点误差的计算;使用准确滴定的判别式判断滴定的可能性,正确控制滴定的酸度范围,掌握提高络合滴定选择性的途径;了解络合滴定的方式及其应用,掌握分析结果计算方法;能设计络合滴定分析方案。7、氧化还原滴定法考试内容
标准电极电势及条件电极电势的概念,电极电势及条件电极电势的计算,氧化还原反应的平衡常数;氧化还原滴定指示剂的种类及作用原理,氧化还原滴定过程溶液电势的计算,滴定曲线的绘制;氧化还原滴定预处理的目的、要求与方法;氧化还原滴定法的具体应用及分析结果的正确计算。考试要求
掌握条件电极电势的概念及计算,判断反应进行的方向;掌握平衡常数的计算,判断反应进行的程度;了解氧化还原滴定的原理,掌握氧化还原滴定过程溶液电势的计算及滴定突跃范围的计算,正确选择滴定指示剂;掌握常用的氧化还原预处理剂的使用条件及除去的方法;正确计算氧化还原滴定分析的结果;掌握高锰酸法、重铬酸钾法及碘量法的三类分析法的原理及应用。
8、沉淀滴定法和滴定分析小结考试内容
沉淀滴定法,沉淀滴定终点指示剂和沉淀滴定分析方法,滴定分析小结。考试要求
了解莫尔法、佛尔哈德法和法扬司法的沉淀滴定原理;掌握莫尔法、佛尔哈德法和法扬

司法的滴定条件、指示剂的选择及方法的应用范围。9、重量分析法考试内容
重量分析法的原理及分类,沉淀重量法对沉淀形式和称量形式的要求,换算因素及重量分析结果的计算;沉淀的溶解度及其影响因素,溶解度、溶度积及条件溶度积的概念及计算,沉淀的类型和沉淀的形成过程,影响沉淀纯度的主要因素,有机沉淀剂的主要类型及特点。考试要求
了解重量分析法的原理,掌握沉淀重量分析法结果的计算;掌握溶解度、溶度积及条件溶度积的相关计算;了解同离子效应、盐效应、酸效应和络合效应对溶解度的影响,掌握不同条件下溶解度的计算方法;了解影响沉淀纯度的主要因素和提高沉淀纯度的方法;了解有机沉淀剂的主要类型及特点。10、吸光光度法考试内容
物质对光的选择性吸收,光吸收的基本定律,分光光度计的主要部件及功能,吸收光谱,显色反应及显色反应条件,测定波长及参比溶液选择,标准曲线,吸光光度分析的误差控制,示差法、多波长法、导数法的原理及特点,吸光光度法的应用。考试要求
了解光的特性和分子吸收光谱法的基本特征,熟练掌握光吸收的基本定律;认识吸光光度法中引起误差的原因,理解摩尔吸光系数的意义并掌握计算方法;了解分光光度计仪器的构造与功能;掌握显色反应及其影响因素;熟练掌握光度测量方法和测量条件的选择;掌握绘制吸收光谱及标准曲线的方法,了解定性与定量分析的依据;了解光度测量的误差,掌握示差法、多波长法、导数法等吸光光度法的原理和特点;了解光度分析法的应用。11、分析化学中常用的分离和富集方法考试内容
气态分离法,沉淀与过滤分离法,萃取分离法,离子交换分离法,色谱分离法,电分离法,气浮分离法,膜分离法等。考试要求
了解分析化学中常用的分离方法,掌握其基本原理及应用。(二)仪器化学1、绪论考试内容
分析化学发展和仪器分析的地位,仪器分析方法的类型。考试要求
了解分析化学中的仪器方法,了解仪器分析方法的性能指标。2、色谱分析法考试内容
气相色谱法分离原理,色谱有关术语,色谱法基本理论;气相色谱仪(气相色谱检测器)气相色谱固定相及其选择,气相色谱分离条件的选择;定性和定量分析;气相色谱分析方法及应用;毛细管气相色谱;高效液相色谱的主要类型及分离原理,分配色谱,液固色谱,离子交换色谱和离子色谱,尺寸排斥色谱;高效液相色谱仪;高效液相色谱应用。考试要求
理解色谱分析法的基本原理;掌握色谱法的有关术语及概念;熟悉色谱定性和定量分析方法;了解气相色谱和高效液相色谱仪的基本组成及工作原理;了解气相色谱固定相和液相色谱流动相和固定相的类型及特性;掌握气相色谱分离条件的选择方法;了解各类高效液相

色谱法的原理及特点;重点掌握色谱塔板理论和速率理论、流动相和固定相的类型及特性等。3、电分析考试内容
电位分析法原理;金属基指示电极,膜电位与离子选择电极,离子选择电极的类型及响应机理,离子选择电极的性能参数,定量分析方法,离子选择电极的特点及应用;伏安法和极谱法,物质的传递与扩散控制过程,扩散电流理论,直流极谱法,极谱波的类型及其方程式,单扫描极谱法,直流循环伏安法,脉冲技术,溶出方法;电解分析的基本原理,电解分析方法及其应用,库仑分析法,滴定终点的确定。考试要求
了解电分析化学的主要类型;熟悉电分析化学的基本术语和概念;熟悉金属基电极的类型及电极反应掌握离子选择性电极的类型及性能参数;熟悉电位分析的定量分析方法和应用范围;掌握极谱法的基本原理及极谱波的类型及方程式;了解单扫描极谱法、循环伏安法、脉冲极谱法、极谱催化波和络合物吸附波以及溶出伏安法的基本原理及特点。4、光谱分析考试内容
电磁辐射的波动性,辐射的量子力学性质,光谱分析分类。(1原子光谱
原子光谱的产生、光谱项与能级图、跃迁规则、谱线强度、自吸与自蚀、分馏效应、背景的来源等基本概念,发射光谱仪的基本结构及主要光源的工作原理,原子发射光谱法的特点及定性、半定量方法等;原子吸收光谱法的基本原理、谱线的轮廓及变宽因素,峰值吸收测量技术要点,原子吸收光谱仪的基本结构和主要部件的作用,空心阴极灯的工作原理,焰及石墨炉原子化器的特点,干扰的类型及消除方法,原子吸收光谱法的特点等;原子荧光的产生及主要类型,共振荧光及非共振荧光、荧光猝灭等基本概念,原子荧光光谱仪的基本结构和主要部件的工作原理和作用,干扰的类型及消除方法,原子荧光光谱法的特点等。(2分子光谱
紫外一可见分子吸收光谱法,光吸收定律,紫外及可见分光光度计,化合物电子光谱的产生,紫外一可见分子吸收光谱法的应用;红外吸收光谱法基本原理,产生的条件,基团频率和特征吸收峰,影响基因频率位移的因素,红外光谱仪,试样的制备,红外吸收光谱法的应用。
考试要求
了解电磁辐射的性质。掌握电磁辐射与物质相互作用的原理。了解光学分析仪器的大致构造。
(1原子光谱
理解原子(发射、吸收、荧光)光谱产生的基本原理;熟悉原子光谱强度(发射、吸收荧光强度)的主要影响因素;了解原子光谱(发射、吸收、荧光)分析仪器的基本结构及主要部件的工作原理和作用;掌握各种光源、原子化器的特点及分析性能;掌握原子(发射、吸收、荧光)光谱的定性、定量分析方法。(2分子光谱
理解分子吸收光谱产生的原因及特点;掌握有机化合物中价电子的类型;掌握有机化合物中电子跃迁的类型及所需能量大小的比较;理解有机化合物中重要的紫外吸收光谱;有机化合物的紫外吸收光谱中吸收带的类型及其特点;理解溶剂对紫外吸收光谱的影响;理解在有机化合物的鉴定及结构推测上紫外吸收光谱提供的信息及其特点;掌握紫外及可见光分光光度计的基本组成及其作用;了解红外吸收光谱区的分类;掌握产生红外光谱的条件;掌握分子振动方程式及影响基本振动频率的因素;掌握分子的基本振动形式及亚甲基的基本振动

形式;了解影响红外光谱吸收强度的因素;掌握常见化学基团的红外吸收谱带;掌握影响基团频率位移的外部因素和内部因素;理解红外光谱定性分析的基本依据;了解红外光谱定性分析的过程;掌握红外光谱仪的基本组成及其作用。三、参考书目
[1]武汉大学主编,分析化学(第五版),上册,高等教育出版社,2006.[2]朱明华,胡坪,仪器分析(第四版),高等教育出版社,2008.
[3]武汉大学主编,分析化学(第五版),下册,高等教育出版社,2007.

本文来源:https://www.2haoxitong.net/k/doc/f8b05799f41fb7360b4c2e3f5727a5e9856a27b2.html

《硕士研究生入学考试自命题考试大纲.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式