葡萄埋藤机的设计

发布时间:2017-08-17 12:04:14   来源:文档文库   
字号:

随着我国经济的发展和人民生活水平的提高,人们对葡萄的需求量越来越大,但我国葡萄生产的机械化总体水平不发达,尤其是葡萄种植过程中工作量最大的葡萄藤越冬埋土作业基本上都是以人工为主,作业劳动强度大,效率低,质量难以保证,针对这一现状,本文通过调研葡萄的种植和国内外现有葡萄藤越冬埋土机械的使用情况,在综合分析各自优点的基础上,通过自主创新研制出一种新型葡萄埋藤机。

该机具前面旋耕取土,后面经过两级输送带将土壤均匀的输送到机组一侧的葡萄藤上,解决了葡萄藤越冬埋土机械化问题,本机具具有以下特点:

1)本文设计的旋耕取土部件,解决了葡萄埋藤机松土、碎土、抛土以及取土量大的问题,工作时取土宽度为110cm,最大取土深度20cm,可以满足不同年份葡萄藤越冬埋土所需土量的要求。

2)本文设计的土壤输送系统,可根据情况将旋耕取土部件抛送的土壤选择机组左侧葡萄藤进行集中均匀的抛送,减少土壤的分散,提高埋藤土壤的利用率。

3)本文设计的中间传动换向齿轮箱,采用牙嵌式离合器机构对后输出轴的旋转方向进行正反转切换,结构简单、紧凑、性能可靠,具有新意。

田间试验表明,本文设计的葡萄埋藤机能够适应不同行距的葡萄藤越冬埋土的要求,一次完成取土,抛土!埋土作业,具有取土量大,埋土均匀!输土方向可以选择,工作效率高的特点整机设计合理,对实现葡萄藤越冬埋土机械化具有很高的现实意义,促进了葡萄种植业机械化发展。

关键词:葡萄藤;埋土;冬季保护;机械

第一章引言 1

1.1问题的提出 1

1.2国内研究现状 2

1.3研究的目的和意义 2

1.4研究内容 3

1.5葡萄埋藤机的整体结构设计 3

第二章葡萄埋藤机总体方案设计研究 5

2. 1整机设计原则 5

2.2葡萄的种植要求 5

2.3工作原理 6

第三章葡萄埋藤机旋耕取土部件的设计 7

3.1侧边传动箱体的设计 7

3.2旋土刀的结构设计 8

3.3旋土刀轴直径的设计 9

3.4旋土刀轴强度校核 9

第四章中间传动换向齿轮箱的设计 11

4.1中间传动换向齿轮箱的整体结构设计 11

4.2中间传动换向齿轮箱关键部件的设计与强度校核 11

4.3直齿圆锥齿轮的参数确定及强度校核 13

4.4中间一轴的设计与强度校核 15

总结 16

17

参考文献 19



1引言

1.1问题的提出

葡萄,又名草龙珠、山葫芦、蒲桃、李桃、蒲陶等,葡萄皮薄而多汁酸甜味美营养丰富有“晶明珠和“水果皇后”之美称葡萄营养丰富据科学分析它含有人体所不可缺少的谷氨、精氨酸、色氨酸等十几种氨基酸,因此常吃些葡萄对神经系统和心血管的正常活动是大有裨益的能使人延年益寿。

近年研究表明葡萄含有白黎芦醇和多种维生素对防治癌症和心血管病有良好的作用葡萄汁有助于增强肝功能促进胆汁分泌葡萄皮具有降血脂、抗血栓、预防动脉硬化、提高免疫力的作用,葡萄中还含有类似于胰腺分泌的胰岛素物质因此医生把葡萄汁列入糖尿病人的食谱中并用于痛风、节炎和风湿病患者的营养食品,人还说:“久食(葡萄)经身不老”。

葡萄用途很广除了果实可以鲜食、酿酒、制汁、制干、制罐头外还可以加工葡萄果浆和葡萄果冻葡萄种子可提炼单宁和高级食用油葡萄根可入药葡萄叶也是一种良好的饲料。所以葡萄全身都是宝随着人们对健康的追求对葡萄的食用及医用价值的研发和认识葡萄这一绿色食品以其无公害、高营养、高质量、具有大自然特征的原汁原味等特点满足了人们回归自然的消费需求赢得了人们的喜爱使得国内外市场对葡萄的需求量不断增大,我国葡萄干的人均年消费量是80只占美国年人均消费量的1/10,随着人们收入的增加人们对葡萄的消费量也会随之增长,国内葡萄干市场一直处于供不应求的状态,随着需求的增加我国的葡萄种植 面积也在逐年的增加。

在我国新疆、山 东、河北、辽宁、山西、宁夏、吉林和河南等葡萄主要产区葡萄生产已形成了规模化、产业化的发展格局,随着葡萄生产的规模化发展对葡萄生产全程机械化的需求也越来越高同时也为葡萄生产全程机械化发展提供了条件。

我国葡萄种植区域分布很广各地的气候条件,地理环境不尽相同在作业环节上也有所差异,但我国葡萄种植大多数在北方也就形成了我国特有的葡萄种植方式葡萄越冬防寒和风干埋土是一项重要的作业环节,葡萄秋末剪枝后需下架进行冬前埋土防寒防止冻伤与风干,防寒、防风干埋土的厚度及宽度都是按当地历年冻土厚度和地表下一5°C的土层深度来确定,一般防寒土堆的宽度是当地冻土厚度的1.8以地表到一5°C的土层深度为防寒土堆的厚度近年来由于全球气候变暖加上采用抗寒砧木防寒土堆的宽度与厚度可减少1/31/2,即可安全越冬。

葡萄藤埋土防寒,防风干时要求土壤要细碎防止大土块搭接有空洞透风抽条,埋土压蔓要防止损伤枝蔓以免病害浸染以及影响来年产量取土位置距根部不能太近最少50cm左右以免根部受冻埋土防寒后 冬季进行田间检查发现问题及时补救,防寒后及时灌冬水以保证植株安全越冬葡萄根系常分布在地表下2060cm土层中深的达100cm葡萄较易产生不定根根受伤后在伤口附近再生大量的根因此在栽培上适当断根是可以的但不能大量断根根系生长的土壤温度是2125°C或低于10°C时即停止生长葡萄根系发达有很强的吸收能力和养分贮藏能力但抗寒性较差比枝蔓怕冻土壤温度在一4°C到一6°C就能受冻害甚至冻死1,一旦冬 季根系遭受冻害次年枝蔓生长结果便会大受影响,因此北方寒冷地区埋土防寒时要特别注 意根系防寒。

随着我国经济的发展葡萄种植面积不断增加但葡萄生产的机械化总体水平还较低"葡萄生产中的春天扒藤一上架绑藤一除草施 肥浇水一喷施药剂一收获一冬季埋藤等几个主要环节有的己经可以实现机械化或半机械化作业但有的属于刚起步有的则刚进入推广应用阶段其中冬季埋藤这一生产环节还处于起步阶段2

因此研制一种可靠性强作业质量好作业效率高的葡萄藤越冬埋土机械具有很高的现实意义和经济效益。

1.2国内研究现状

我国从上世纪八十年代 初就已经开始着手研制葡萄埋藤机经过几代科研人员的努力己经研制出几种形式的样机并且己经小批量的生产但大都具有一定的局限性。

1984新疆农科院农机化所研制的与铁牛一55型拖拉机配套进行篱架式葡萄藤越冬埋土机该机采用铲抛原理将土抛向藤捆,该机具主要由机架、铲刀、升运器、输送器及传动系统组成但由于机具作业效率低埋土量小适应性差没有得到广泛推广。

2003辽宁省营口市研发了20PF一型葡萄越冬覆土机,该机与14.7kw拖拉机配套通过传动轴,链轮减速后使覆土器叶轮将土取出并均匀地抛到葡萄藤上经过二三次的往复抛土作业达到埋土要求该机适用于沙壤土,含水率在12%25%以下的无石块葡萄园中作业3,对于东北等高寒地区虽有一定的适应性但因效率低等缺点推广应用还有很大的局限性。

1.3研究的目的和意义

葡萄是我国重要的果树改革开放和农村产业结构的调整促进了葡萄栽培业的发展特别是近十年葡萄栽培的面积和产量一直呈上升趋势葡萄藤的安全越冬问题是其能否连续正常生产的关键冬季来临之际为防止葡萄藤风干和冻伤都要将葡萄藤用土掩埋起来"然而葡萄藤越冬掩埋是葡萄种植生产过程中劳动强度大作业质量要求高季节性强的作业葡萄人工埋藤土块大密封性差作业质量差容易造成葡萄藤折断也容易因密封不好致使葡萄藤风干或者冻伤,而我国目前大多数葡萄园还采用人工埋藤的方法不但劳动轻度大效率极低在遇到极端天气的情况下工来不及埋藤造成葡萄藤的冻伤给农民的经济带来极大的损失。

葡萄埋藤机具有埋土均匀作业质量好效率高、成本低等优点综合分析我国现有葡萄埋藤机的使用情况结合我国地块和葡萄种植模式可知采用中间旋耕取土输送带可左右选择抛土的葡萄埋藤机在我国比较适用由于我国葡萄产区分布范围广葡萄品种多形成了葡萄种植生产 模式多样化地区差异明显的特点,采用输送带单侧抛土可以解决葡萄种植行距不均匀导致葡 萄藤埋土的问题。我国葡萄产区分布范围广各地区的土壤坚实度条件不同采用中间旋耕取土能够有效的解决埋藤所需土壤和减小动力消耗的问题我国现有葡萄埋藤机大都取土量小不能一次完成葡萄藤冬季埋土作业且埋藤过程中土壤比较散乱采用新型的中间取土机构能够满足各类葡萄藤冬季埋土所需土壤量的要求;采用输送带输土,单侧抛土结构极大的提高了取土部件所取土壤的利用率[4]

综合上述分析为解决葡萄种植生产模式多样化地区差异明显等问题满足我国葡萄种植业的实际生产需要研制中间旋耕取土输送带输土单侧左右方向可选择抛土的葡萄埋藤机是十分必要的。

1.4研究内容

本课题研究内容可分为四大部分:一是对葡萄埋藤机的整体结构进行设计;二是葡萄埋藤机旋耕取土机构的探索研究解决我国严寒地区埋藤需土量大的问题;三是研制葡萄埋藤机的土壤输送机构使旋耕取土部件取出的土壤均匀集中的抛在葡萄藤上;是研制集传动与换向功能于一体齿轮箱 使得葡萄埋藤机土壤输送机构可以选择埋土的方向。

1.5葡萄埋藤机的整体结构设计

对葡萄埋藤机整体结构布局进行设计如图1-1(a)1-2(b)所示

1-1a)葡萄埋藤机

1-2三维图(b

1链轮 2传送带 3侧边传动箱 4二级减速器 5旋耕刀轴 6传动轴

1 .5.1葡萄埋藤机旋耕取土部件的研究

旋耕取土部件的分析与设计

分析国内外旋耕机的旋土情况结合葡萄埋藤机旋土取土部件的特殊要求设计了葡萄埋藤机旋耕取土部件的刀轴、旋土刀及旋土刀的布局。

2葡萄埋藤机总体方案设计研究

2. 1整机设计原则

1旋耕取土时不应损害葡萄的根部避免造成葡萄藤根系的损伤影响来年的产量。

2埋藤机工作时埋藤的土量达到葡萄藤安全越冬所需埋土的要求。

3能适应不同葡萄种植行距和不同年份的葡萄藤。

4保证整机的工作稳定性和可靠。

2.2葡萄的种植要求

我国葡萄的种植一般采用标准化的种植模式石灰桩与铁丝网固定葡萄藤在河北、山东、宁夏、安徽等地葡萄种植行距一般在23米之间新疆行距一般在2.53.5米之间葡萄藤的适应性很强对土壤的要求不是很严格但是为了获得稳产对土壤应尽可能的进行改良除建园时已进行的一些田间工程外在葡萄的整个生长过程中还需进行深翻排灌等我国多数葡萄园采用清耕法 北方少雨区清耕有利于春季地温回升和保持水分、疏松土壤、熟化土壤,新疆、河北塞外 张家口产区实行秋季清耕有利于晚熟葡萄利用地面反射光和辐射热提高果实的糖度、清耕、除草的具体方法是在灌溉或者雨后结合除草耕松土壤松土深度为1015cm

葡萄藤根数量多分布深表层分布在葡萄藤根部40cm的范围内这就要求葡萄藤越冬埋土的取土范围要距葡萄藤根部有一定的距离以免伤害葡萄藤根部,葡萄藤在越冬埋土时要对葡萄藤进行剪枝然后将剪好的葡萄藤依次顺续放好。

为了葡萄藤越冬埋土不伤害葡萄藤的根系要求葡萄藤埋土需要土壤在距离左葡萄藤40cm的范围内以行距为2.5米的葡萄藤为依据要获得葡萄藤越冬埋土的土壤而不伤害葡萄藤根系取土的范围在中间1.7米宽的范围内根据我国葡萄的种植模式中间取土的范围完全满足葡萄埋藤机取土宽度的要求采用旋耕取土的方式能有效的降低取土的动力消耗由于我国大部分葡萄产地冬季寒冷在新疆冬季气温达到一20°C至一30°C需求葡萄藤埋土要有一定的厚度和宽度国内的一些机型结构上采用造成一次埋土不足需要多次反复埋土来达到葡萄藤安全越的要求,我们采用单侧埋土将葡萄藤行间位置所取的土壤全部埋在一行葡萄藤上一次达到葡萄藤安全越冬埋土的要求,由于葡萄藤下架扶倒相对于石灰桩左位置各个葡萄园不相同单行葡萄藤越冬埋土时必须可以对机组左葡萄藤进行选择埋土(如图2-1)所示,采用中间旋耕取土单侧可选择机组左侧葡萄藤进行埋土的结构形式。

2-1埋藤示意图

2 .3传动系统设计

本机型设计的葡萄埋藤机旋土刀的旋转半径为318mm,机组配套使用的拖拉机功率为36.75kw,中间传动换向齿轮箱输入轴的输入转速为540r/min考虑到葡萄埋藤机刀轴纵向输土机构和横向输土机构都需要动力传输故本文设计的动力传输系统设计的动力传输系统主 要分为三部分:

第一部分:动力经拖拉机输出轴传输到中间传动换向齿轮箱经过锥齿轮传动轴传给侧边传动箱侧边传动箱经过齿轮传动传递给旋土刀轴。

第二部分:动力经中间传动换向齿轮箱的后输出轴在经过传动轴、链轮、链条传输给横向土壤输送机构。

2.3.1工作原理

工作时旋耕取土部件对土壤进行疏松打碎土壤在旋耕取土部件旋土刀与送土铲的配合下沿送土铲的方向抛送到横向土壤输送机构中在传动链条的带动下横向土壤输送将土壤均匀的抛在待冬季埋土的葡萄藤上一次完成葡萄藤越冬埋土的全过程。

3葡萄埋藤机旋耕取土部件的设计

3.1侧边传动箱体的设计

侧边传动箱体连接着刀轴与纵向土壤输送机构动力的传输侧边箱体设计为1个输出轴个输入轴上端右侧为纵向土壤输送机构的动力输入轴、左侧为输出轴下端右侧为旋土刀轴输出轴如图所示本设计采用上端输入轴与上输出轴为同一根轴简化传动结构为了增加旋土刀的旋转半径侧边传动箱体采用三级齿轮传动使上输入轴与下输出轴之间的垂直距离达到870mm如图3-1所示。

3-1传动箱示意图

3.2旋土刀的设计要求

由于葡萄埋藤机的旋土刀是在葡萄藤的行间工作工作条件比较恶劣作业难度大本文

设计的旋土刀除了满足疏土碎土外还要满足以下要求:

(1)旋土刀旋土深度要大

因为我国葡萄主产地新疆夏等冬季比较寒冷为了防止葡萄藤的冻伤要求葡萄藤冬季埋土量大要求葡萄埋藤机有足够的旋耕取土深度达到埋藤所需的土量。

(2)旋土刀具有抛土功能

因为本文设计的葡萄埋藤机是将旋耕取土部件旋耕的土壤全部抛送到纵向土壤输送机构中要求旋土刀具有向后抛送土壤的功能从而减小动力消耗和避免机组前端出现土壤拥堵现象。

(3)旋土刀工作时的动力消耗小

我国人口众多人均资源相对短缺考虑到经济效益和节能减排旋土刀的设计尽可能的减小工作时的动力消耗。

(4)旋土刀组布局要合理

合理的旋土刀布局可以减小机组的侧向力增加旋耕取土部件向后抛送土壤的能减小动力消耗。

3.2.1旋土刀的结构设计

旋土刀是旋耕取土机构的主要工作部件旋土刀片的形状和参数对旋耕取土机构的工作质量、功率消耗影响很大。

弯曲形式的旋土刀主要由正切面(包括正切刃),过渡面(包括过渡刃)和侧切面(包括侧切刃)组成如图(3-2)所示正切面除了具有切土功能外还具有翻土、碎土、抛土等功能这也正满足葡萄埋藤机的旋耕取土机构需要向后抛送翻耕土壤的要求侧切面具有切开土堡切断或推开草茎的功能5

3-2旋土刀

目前国家标准6仅推荐侧切刃曲线采用阿基米德螺旋线,但根据农艺的要求对刃口滑切角及刀刃上某点的速度矢量与该点刃口曲线法平面之间的夹角可提出不同的要求因而刃口曲线有多种多样包括阿基米德螺旋线、等角对数螺线、正弦指数曲线、直线和偏心圆曲线五种,试验证明阿基米德螺旋线是动力消耗最小的刃口曲线〔本文根据实际需要从动力消耗和旋土抛土的要求出发设计选用阿基米德螺旋线作为弯曲形式的旋土弯刀的刃口曲线曲线的方程如下:

r=r0+k 3-1

式中:r0一刀刃起始工作半径cm

k一为常数(比例系数)

一为位置度(极角),弧度

其滑切角为: 0= 3-2

本文设计选用的T245的旋土弯刀[7]

3.3旋土刀轴直径的设计

常用的旋耕机的刀轴直径为8090过上述对旋土刀运动的分析可知通过增加旋土刀刀轴的直径可以增加旋耕取土部件的取土深度故本文采用直径为150mm的刀轴(如图3-3)所示并进行了旋土刀轴强度校核计算。

3-3旋土轴

3.4旋土刀轴强度校核

计算旋土刀轴的最大扭矩MMax

MMax=95 3-3

其中P-拖拉机的输出功率,kw

n-旋土刀轴转速,r/min

P=36kwn=240r/min代入公式

MMax=9549=1025N·m

薄壁空心管的抗扭截面模量为:

Wt= (3-4)

式中Wt一圆轴抗扭截面模量:

D一旋土刀轴外径,mm

一旋土刀轴的空心比即旋土刀轴内外、径之比生

D=150mmd=125mm =0.9代入式中

Wt= =0.3

材料的最大切应力为

0= (3-5)

MMax=1025N·m Wt=0.3m

==5MPa

刀轴的材料选用Q235,所以材料的许用应力[]=235MPa,许用切应力[]=(0.50.6)·[]=117140MPa。所以,满足要求即可。

4中间传动换向齿轮箱的设计

4.1中间传动换向齿轮箱的整体结构设计

根据葡萄的种植模式葡萄埋藤机在工作时根据需要选择机组左侧葡萄藤进行埋土作业这就要求埋藤机的齿轮箱具有输出和转向的功能,本文第一代样机是在现有的中间传动箱后面加上一级换向齿轮箱中间通过链条连接两箱体的输入输出轴这种传动方式结构复杂且前后箱体装配精度要求高稍有偏差就会使链条断裂损坏本课题设计了一种集传动换向于一体的中间传动换向齿轮箱,一般根据一级齿轮传动换向的原理改变输出轴的旋转方向这种设计结构复杂成本较高,本机型采用组合式离合器结构对输出轴进行换向如图(4-1)所示。

4-1换向齿轮箱示意图

4.2中间传动换向齿轮箱关键部件的设计与强度校核

4.2.1直齿圆锥齿轮的几何关系及受力分析[8

4-2齿轮受力分析图

直齿圆锥齿轮传动的几何关系 如图(4-2)。分别为小齿轮和大齿轮的大端分度圆直径、平均直径、分度圆锥角;R为锥距;b为齿宽。小端、大端分度圆直径=

齿数比

锥距R =

齿宽系数 常用=0.250.3

平均直径

(1) 直齿圆锥齿轮的受力分析

锥齿轮轮齿刚度大端大小端小故沿齿宽的载荷分布不均匀若忽视摩擦力和载荷集中的影响假设法向力Fn集中作用在齿宽节线中点处该集中力凡可分解为圆周力Ft径向力Fr、轴向力Fa三个正交的分力为直齿圆锥齿轮轮齿的受力情况。

各力的大小计算如下:

式中: 一小锥齿轮转矩(N·m);

一小锥齿轮齿宽中点分圆直径(mm)

一小锥齿轮的分锥角;

各力方向的判断:主动轮圆周力方向与轮的回转方向相反从动轮圆周力方向与轮的回转方向相同;径向力分别指向各轮轮心;轴向力分别指向各轮大端。

4.3直齿圆锥齿轮的参数确定及强度校核

1.参数确定

本文主要进行了中间I轴上相互啮合的直齿锥齿轮的设计。

选用材料:小齿轮:20CrMnTi,渗碳淬火齿面硬度为5560HRC

大齿轮:20CrMnTi,渗碳淬火齿面硬度为5560HRC

初选齿数:取小齿轮齿数=17

大齿轮齿数: =27

齿宽系数取=0.3根据拖拉机的输出转速选择齿轮精度等级为8

寿命系数 =1

通过查机械设计手册可得:

极限应力: =470MPa =470MPa

尺寸系数

安全系数

将上面求得的数据代入公试

(4-1)

得许用弯曲应力

2.按齿根弯曲疲劳强度公式计算齿轮主要参数

(1)根据公式 (4-2)

其中小齿轮转矩N·m

分锥角

当量齿数

查手册可得

通过查手册可得

将上述求得的数据代入公式可得:

=7.3

由标准模数系列表取标准模数m=8

3.按齿面接触疲劳轻度进行校核

(4-3) 通过机械设计手册查MQ线得接触疲劳极限=1500MPa =1500MPa

取安全系数寿命系数

通过查机械设计手册可得:

将数据代入公式得

故设计的直齿锥齿轮符合要求。

同理设计的换向直齿锥齿轮工采用20CrMllTi渗碳淬火模数m=3mm,齿数z=35;传动齿轮采用20CrMnTi渗碳淬火模数m=3mm,齿数z=28

4.4中间一轴的设计与强度校核

中间一轴为悬臂轴采用与锥齿轮锻造成一体的结构避免了锥齿轮与传动轴连接出现松动的现象材料选用20CrMnTi,传动轴承受拖拉机输出轴扭矩M和啮合锥齿轮扭矩Mn

中间一轴的扭矩为:

扭截面模量为:

中间一轴的最大切应力:

40cr许用剪切应力200Mpa

=27.08

中间一轴设计安全同理对中间传动换向齿轮箱的其它传动轴进行强度校核得之均满足强度要求。

本文简述了葡萄生产状况和葡萄埋藤机械的概况,找出了现在葡萄埋藤的相关问题,提出了一种新的设计方案,并从研究内容,技术路线和可行性分析方面进行了详细地阐述。确定了取土,抛土方式,对整机提出来总体设计方案。详细地介绍了旋耕取土机构,土壤抛送机构以及关键零部件的有限元分析。本文得到了结论如下:

1)设计了一种新型的葡萄埋藤机,性能稳定,能够高质量的完成冬季葡萄藤覆土作业全过程,埋土质量好,效率高。

2)本文设计的旋耕取土机构,能够符合埋藤所需土量的要求,所设计的旋土刀机构合理,能将旋耕后的土壤抛送到土壤抛送机构上。

3)采用了类似于开沟机原理的土壤抛送机构,能够将旋耕取土机构抛送的土壤定点均匀的抛送到葡萄藤上。

毕业在即,四年的大学生活已接近尾声,经过三个多月的努力,在老师的悉心指导下,设计任务基本完成了。在撰写论文期间,我要衷心的感谢我的指导老师,从设计的选题、实施到撰写、修改和定稿,老师均倾注了大量的心血。导师的悉心指导、热忱鼓励不仅使我树立了深远的学术目标、掌握了基本的研究方法,还使我明白了许多待人接物与为人处事的道理。还有,导师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力将使我终生受益。同时我还要感谢大学期间各位任课老师在学习上给予我的指导和帮助,感谢他们四年来的辛勤栽培,他们的关怀和熏陶让我在这四年里收获颇丰。

最后,也感谢和我一起学习的同窗朋友,他们给了我无数的关心和鼓励,也让我的大学生活充满了温暖和欢乐,感谢他们的陪伴与帮助,愿我们以后的人生都可以充实、多彩与快乐!

参考文献

[1]庞俊杰勾贺明宁书臣.我国葡萄机械化埋藤技术及其发展〔J].中外葡萄与葡萄酒,2008(3):3233.

[2]牛长河刘旋风郭兆丰等.葡萄埋藤技术与装备的现状分析7J].新疆农机化,2010(2):1011.

[3]奚佳有葡萄埋藤机械化技术探讨〔J8.农业技术与装备2010(4).

[4]张军李小兵.IMI〕,500型多功能葡萄埋藤机〔J8.新疆农机化,2008(l):37.

[5]JamesG.HendriekWilliamR.Gill.RotaryTillerDesignParametersPartlDireetionofRotation.TransaetionsoftheASAE1971:669674.

[6]丁为民彭篙植.旋耕刀正切刃设计方法的研究.农业机械学报,199526(4):5661.

[7]李理霍春明.我国旋耕机研究现状及发展方向.现代化农业,2004.(10):3738.

[8]郑江许瑛等.机械设计[M8.北京:北京大学出版社,2006:1172.

本文来源:https://www.2haoxitong.net/k/doc/ff56d6a80342a8956bec0975f46527d3240ca69c.html

《葡萄埋藤机的设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式